LaTeX .By

DongHyo Lee
started in 13th,May,2024

Abstract

This is the place where the subjects that most undergraduates majoring Mathematics would learn. Nothing special, just going write what I want.

ν•™λΆ€μƒμœΌλ‘œμ„œ λ°°μ› λ˜ μˆ˜ν•™μ„ μ΄λ§λΌν•˜μ—¬ λ‘μ„œμ—†μ΄ μž‘μ„±ν•˜λŠ” κ³³. μ•„λž˜ κΈ€ λ‚΄μš©μ€ 각 κ³Όλͺ©μ—μ„œ 배운 것 μ€‘μ—μ„œ ν•˜λ‚˜μ”© λΉΌμ™€μ„œ μž‘μ„±ν•œ 것이닀.

Discrete Mathematics

(23-1)μ œλŒ€λ‘œ μ•ˆν•œκ±΄μ§€, μ–•κ²Œ ν•œκ±΄μ§€λŠ” λͺ°λΌλ„ μˆ˜ν•™λ“€ μ€‘μ—μ„œ 제일 μ‹ μ„ ν•˜κ³  μž¬λ―Έμžˆμ—ˆλ‹€. μ’€ 더 μˆ˜ν•™μ„ κ³΅λΆ€ν•΄μ•Όκ² λ‹€λŠ” 생각이 λ“  κ³Όλͺ©μ΄λ‹€.

$$F_{n+2} = F_{n+1}+F_{n}, n \in \mathbb{Z}_{\geq 0}$$ $$F_{0} = 0, F_{1} = 1$$

Put the non-negative interger $n$:

Here's one way to derive it. \begin{align*} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^n \begin{bmatrix} F_1 \\ F_0 \end{bmatrix} &= \begin{bmatrix} F_{n+1} \\ F_n \end{bmatrix} \end{align*}

Differential Equation

(23-1)미방은 κ³ λ“±μˆ˜ν•™μ˜ μ—°μž₯μ„  λŠλ‚Œμ΄ λ“ λ‹€. κ³΅λŒ€μ• λ“€μ΄ 훨씬 더 μž˜ν•˜λŠ” 것 κ°™λ‹€. λ¬Έμ œλŠ” κ³΅λŒ€μƒλ“€λ³΄λ‹€λ„ λͺ»ν‘Έλ‹ˆ 정리듀이라도 증λͺ…ν•΄μ•Όκ² λ‹€.

(Laplace Transform)
Let $f$ be a peicewise continuous function on $[0,\infty)$. We define $L[f](s) = \int_{0}^{\infty}e^{-st}f(t)dt$ provided that the integral converges.

For example, $L[t^{n}](s) = \frac{n!}{s^{n+1}}(s>0)$.
Know that $L$ is a linear operation.

Topology

(24-1)μˆ˜ν•™κ³Ό 해석학을 λ“£κ³  λ°”λ‘œ λ“€μ–΄λ³΄λŠ” μž…μž₯μ—μ„œ, λ­”κ°€ μ‹€μˆ˜μ—μ„œλ§Œ μ‚¬μš©λ˜λŠ” κ°œλ…μ„ μΌλ°˜ν™”μ‹œν‚€κ³  μ •λ¦¬λ‘œ μ‚¬μš©λœ open, closedλ₯Ό μ •μ˜λ‘œ μ‚¬μš©ν•˜λ©΄μ„œ μ‹œμž‘ν•˜λ‹ˆ λ­”κ°€ μ‹ κΈ°ν•˜κΈ΄ ν•˜λ‹€.

In Topology, we use an open set. That is, 'metric' is not needed. We defined and open sets in $\mathbb{R}$. Let's discuss about properties of open sets in $\mathbb{R}$.
1. $\emptyset, \mathbb{R}$ are open.
2. If $u_{\alpha}$ is open $\forall \alpha\in J$, then arbitrary union $\bigcup\limits_{\alpha\in J}u_{\alpha}$ is open.
3. If $u_{i}$ is open $\forall i = 1,2,...n$, then finite intersection $\bigcap\limits_{i=1}^{n}u_{i}$ is open.
In Topology, we use these properties as a definition.

$\mathcal{T}$, topology on $X$, is a collection of subsets of $X$ such that
1. $\mathcal{T} \ni \emptyset, X$
2. $\mathcal{T} \ni$arbitrary union of elements of $\mathcal{T}$
3. $\mathcal{T} \ni$finite intersection of elements of $\mathcal{T}$.
We say 'an element of $\mathcal{T}$ is an open set'.
(Urysohn Metriation Theorem)
Every regular space $X$ with a countable basis is metrizable.
(Tietze Extension)
Let $X$ be a normal space, and $A$ be a closed subspace of $X$. Then,
  1. Any continuous map of $A$ into $[a,b]\subset \mathbb{R}$ may be extended to a continious map of all $X$ into $[a,b]$.
  2. Any continuous map of $A$ into $\mathbb{R}$ may be extended to a continious map of all $X$ into $\mathbb{R}$.

Number Theory

(23-2)μ •μˆ˜λ‘ μ΄μ§€λ§Œ, integer에 κ·ΈμΉ˜μ§€ μ•ŠλŠ”, 영문 κ·ΈλŒ€λ‘œ μˆ˜μ— λŒ€ν•΄ λ°°μ› λ˜ κ³Όλͺ©μ΄λ‹€. λ°λ°ν‚¨νŠΈ 컷이 μ € μΈμƒκΉŠκ³ , λ°λ°ν‚¨νŠΈ 컷밖에 생각이 λ‚˜μ§€ μ•Šμ•˜λ˜..

A subset $L\subset \mathbb{Q}$ is called a Dedekind Cut if :
  1. $L$ is proper;
  2. $L$ has no maximal element;
  3. For all elements $a, b \in \mathbb{Q}$ with $a < b$, if $b\in L$ then $a\in L$.
$\mathbb{R}$ is complete, $i.e.$ Every cauchy sequence is convergent.

Complex Analysis

(24-1)기얡이 잘..

(Cauchy's Theorem)
If $f(z)$ is analytic in a simply connected domain $D$ and $C$ is a closed cantour lying inside $D$, then $\int\limits_{C}f(z)dz = 0.$
(Taylor's Theorem)
Let $f(z)$ be analytic in a domain $D$ with boundary $\partial D$. If $z_{0}\in D$, then $f(z)$ may be expressed as a Taylor series about $z_{0}$.
$f(z) = \sum\limits_{n=0}^{\infty}\frac{f^{(n)}(z_{0})}{n!}(z-z_{0})^{n}$ for $|z-z_{0}|<\delta = dist(z_{0},\partial D)$.

Abstract Algebra

(25-1)

Differential Geometry

(25-1)

Show that for $\beta(t) = \alpha\circ \varphi(t)$, $\kappa[\beta](t) = \kappa[\alpha](\varphi(t)), \tau[\beta](t) = \tau[\alpha](\varphi(t))$
Know that \begin{align*} \dot{\beta}(t) &= \dot{\alpha}(\varphi(t))\dot{\varphi}(t), \ddot{\beta}(t) = \ddot{\alpha}(\varphi(t))\dot{\varphi}^{2}(t)+\dot{\alpha}(\varphi(t))\ddot{\varphi}(t)\\ \dddot{\beta}(t) &= \dddot{\alpha}(\varphi(t))\dot{\varphi}^{3}(t)+2\ddot{\alpha}(\varphi(t))\ddot{\varphi}(t)+\ddot{\alpha}(\varphi(t))\dot{\varphi}(t)\ddot{\varphi}(t) +\dot{\alpha}(\varphi(t))\dddot{\varphi}(t)\\ \dot{\beta}(t)\times\ddot{\beta}(t) &= \dot{\varphi}^{3}(t)(\dot{\alpha}(\varphi(t))\times\ddot{\alpha}(\varphi(t)))\\ (\dot{\beta}(t)\times\ddot{\beta}(t))\cdot\dddot{\beta}(t) &= \dot{\varphi}^{6}(t)(\dot{\alpha}(\varphi(t))\times\ddot{\alpha}(\varphi(t)))\cdot\dddot{\alpha}(\varphi(t))\\ \text{Then, we have}\\ \kappa[\beta](t) &=\frac{|\dot{\beta}(t)\times\ddot{\beta}(t)|}{|\dot{\beta}(t)|^{3}}=\frac{|\dot{\varphi}^{3}(t)||\dot{\alpha}(\varphi(t))\times\ddot{\alpha}(\varphi(t))|}{|\dot{\varphi}^{3}(t)||\dot{\alpha}(\varphi(t))|} = \kappa[\alpha](\varphi(t))\\ \tau[\beta](t) &= \frac{(\dot{\beta}(t)\times\ddot{\beta}(t))\cdot\dddot{\beta}(t)}{|\dot{\beta}(t)\times\ddot{\beta}(t)|^{2}} =\frac{\dot{\varphi}^{6}(t)(\dot{\alpha}(\varphi(t))\times\ddot{\alpha}(\varphi(t)))\cdot\dddot{\alpha}(\varphi(t))}{\dot{\varphi}^{6}(t)|\dot{\alpha}(\varphi(t))\times\ddot{\alpha}(\varphi(t))|^{2}}= \tau[\alpha](\varphi(t)) \end{align*}

Auction Theory

(25-1)

(Power distribution) Suppose there are two bidders with private values that are distributed independently according to the distribution $F(x)=x^{a}$ over $[0,1]$, where $a>0$. Then, the symmetric equilibrium bidding strategies in a first-price auction is \begin{align*} \Pi_{1}(b,x) &= (x-b)P(\beta^{\mathrm{I}}(X_{2})\leq b) = (x-\beta^{\mathrm{I}}(z))z^{a}\\ \frac{\partial}{\partial z}\Pi_{1}\bigg|_{z=x} &= axx^{a-1}-\frac{\partial}{\partial z}(\beta^{\mathrm{I}}(z)z^{a})\bigg|_{z=x} = 0, \beta^{\mathrm{I}}(x) = \frac{a}{a+1}x. \end{align*}

Partial Differential Equation

(24-2 Exchange Student, GSU) Wave Equationμ΄λž‘ Heat Equation 을 $(-\infty,\infty)$, $[0,\infty)$, $[0,l]$μ—μ„œ ν‘ΈλŠ” 방법듀을 λ°°μ› λ‹€.

(Wave Eq) $u_{tt}-c^{2}u_{xx} = 0$
(Heat Eq) $u_{t}-ku_{xx} = 0$

Applied Numerical Methods

(24-2 Exchange Student, GSU)μˆ˜μΉ˜ν•΄μ„ν•™μ˜ 기본을 배운 것 κ°™λ‹€. ν•¨μˆ˜λ“€μ˜ κ·ΌλΆ€ν„°, λ―ΈλΆ„κ³„μˆ˜, νŠΉμ •ν•œ 적뢄값, n차연립방정식, μ‹¬μ§€μ–΄λŠ” κ³ μœ κ°’κ³Ό κ³ μœ λ²‘ν„°κΉŒμ§€.. μ»΄ν“¨ν„°μ˜ λŒ€λ‹¨ν•¨μ„ λŠλΌλŠ” 기뢄이닀.

Environment

Theorem and Proofs(Temporary placement, μ² κ±°μ˜ˆμ •)

(Schwartz inequality)Let $a_{1}, \ldots , a_{n}$ and $b_{1}, \ldots , b_{n}$ be complex numbers. $$|\sum_{k=1}^{n}a_{k}\bar{b_{k}}|^{2}\leq (\sum_{k=1}^{n}|a_{k}|^{2})(\sum_{k=1}^{n}|b_{k}|^{2})$$
Know that $\langle \vec{x},\vec{x} \rangle \geq 0 \textbf{ } \forall \vec{x}$. Also, since we defined $e^{i\theta} = \frac{\langle \vec{x},\vec{y} \rangle}{|\langle \vec{x},\vec{y} \rangle|}$, we know that $e^{-i\theta} = \frac{|\langle \vec{x},\vec{y} \rangle|}{\langle \vec{x},\vec{y} \rangle}$. By the definition of inner product, $\langle c\vec{x},\vec{y} \rangle = c\langle \vec{x},\vec{y} \rangle$. Then, we also get $\langle \vec{x},c\vec{y} \rangle = \bar{c}\langle \vec{x},\vec{y} \rangle$ begin{align*} 0\leq f(t) = \langle \vec{x}+te^{i\theta}\vec{y}, \vec{x}+te^{i\theta}\vec{y}\rangle &= \langle \vec{x},\vec{x} \rangle + \langle \vec{x},te^{i\theta}\vec{y} \rangle + \langle te^{i\theta}\vec{y},\vec{x} \rangle + \langle te^{i\theta}\vec{y},te^{i\theta}\vec{y} \rangle\\ &= \langle \vec{x},\vec{x} \rangle + te^{-i\theta}\langle \vec{x},\vec{y} \rangle + te^{i\theta}\langle \vec{y},\vec{x} \rangle + te^{i\theta}te^{-i\theta}\langle \vec{y},\vec{y} \rangle\\ &= \langle \vec{x},\vec{x} \rangle + t|\langle \vec{x},\vec{y} \rangle| + t\frac{\langle \vec{x},\vec{y} \rangle \langle \vec{y},\vec{x} \rangle}{|\langle \vec{x},\vec{y} \rangle|} + t^{2}\langle \vec{y},\vec{y} \rangle\\ &= \langle \vec{x},\vec{x} \rangle + 2t|\langle \vec{x},\vec{y} \rangle| + t^{2}\langle \vec{y},\vec{y} \rangle \text{(Quadratic inequality of t)}\\ \end{align*} Since this holds for every $t\in \mathbb{R}$, $$D = |\langle \vec{x},\vec{y} \rangle|^{2} - \langle \vec{x},\vec{x} \rangle \langle \vec{y},\vec{y} \rangle \leq 0.$$ $LHS$ of Schwartz inequality is $|\langle \vec{x},\vec{y} \rangle|^{2}$ and $RHS$ is $\langle \vec{x},\vec{x} \rangle \langle \vec{y},\vec{y} \rangle = |\vec{x}|^{2}|\vec{y}|^{2}$, so it's showed by $D$.
Definition of some of things...

Formatting Texts

Some text can be bold and some can be emphasized.
ν•˜κΈ° μ‹«λ‹€ -μ΄λ™νš¨