(Taylor's Theorem)
Let $f(z)$ be analytic in a domain $D$ with boundary $\partial D$.
If $z_{0}\in D$, then $f(z)$ may be expressed as a Taylor series about $z_{0}$.
$f(z) = \sum\limits_{n=0}^{\infty}\frac{f^{(n)}(z_{0})}{n!}(z-z_{0})^{n}$ for $|z-z_{0}|<\delta = dist(z_{0},\partial D)$.
Differential Geometry
(25-1)
Show that for $\beta(t) = \alpha\circ \varphi(t)$,
$\kappa[\beta](t) = \kappa[\alpha](\varphi(t)), \tau[\beta](t) = \tau[\alpha](\varphi(t))$
Know that
\begin{align*}
\dot{\beta}(t) &= \dot{\alpha}(\varphi(t))\dot{\varphi}(t), \ddot{\beta}(t) =
\ddot{\alpha}(\varphi(t))\dot{\varphi}^{2}(t)+\dot{\alpha}(\varphi(t))\ddot{\varphi}(t)\\
\dddot{\beta}(t) &=
\dddot{\alpha}(\varphi(t))\dot{\varphi}^{3}(t)+2\ddot{\alpha}(\varphi(t))\ddot{\varphi}(t)+\ddot{\alpha}(\varphi(t))\dot{\varphi}(t)\ddot{\varphi}(t)
+\dot{\alpha}(\varphi(t))\dddot{\varphi}(t)\\
\dot{\beta}(t)\times\ddot{\beta}(t) &=
\dot{\varphi}^{3}(t)(\dot{\alpha}(\varphi(t))\times\ddot{\alpha}(\varphi(t)))\\
(\dot{\beta}(t)\times\ddot{\beta}(t))\cdot\dddot{\beta}(t) &=
\dot{\varphi}^{6}(t)(\dot{\alpha}(\varphi(t))\times\ddot{\alpha}(\varphi(t)))\cdot\dddot{\alpha}(\varphi(t))\\
\text{Then, we have}\\
\kappa[\beta](t)
&=\frac{|\dot{\beta}(t)\times\ddot{\beta}(t)|}{|\dot{\beta}(t)|^{3}}=\frac{|\dot{\varphi}^{3}(t)||\dot{\alpha}(\varphi(t))\times\ddot{\alpha}(\varphi(t))|}{|\dot{\varphi}^{3}(t)||\dot{\alpha}(\varphi(t))|}
= \kappa[\alpha](\varphi(t))\\
\tau[\beta](t) &=
\frac{(\dot{\beta}(t)\times\ddot{\beta}(t))\cdot\dddot{\beta}(t)}{|\dot{\beta}(t)\times\ddot{\beta}(t)|^{2}}
=\frac{\dot{\varphi}^{6}(t)(\dot{\alpha}(\varphi(t))\times\ddot{\alpha}(\varphi(t)))\cdot\dddot{\alpha}(\varphi(t))}{\dot{\varphi}^{6}(t)|\dot{\alpha}(\varphi(t))\times\ddot{\alpha}(\varphi(t))|^{2}}=
\tau[\alpha](\varphi(t))
\end{align*}
Auction Theory
(25-1)
(Power distribution) Suppose there are two bidders with private values
that are distributed independently according to the distribution $F(x)=x^{a}$
over $[0,1]$, where $a>0$. Then, the symmetric equilibrium bidding strategies in
a first-price auction is
\begin{align*}
\Pi_{1}(b,x) &= (x-b)P(\beta^{\mathrm{I}}(X_{2})\leq b) = (x-\beta^{\mathrm{I}}(z))z^{a}\\
\frac{\partial}{\partial z}\Pi_{1}\bigg|_{z=x} &= axx^{a-1}-\frac{\partial}{\partial
z}(\beta^{\mathrm{I}}(z)z^{a})\bigg|_{z=x} = 0, \beta^{\mathrm{I}}(x) = \frac{a}{a+1}x.
\end{align*}
Partial Differential Equation
(24-2 Exchange Student, GSU) Wave Equationμ΄λ Heat Equation μ $(-\infty,\infty)$, $[0,\infty)$, $[0,l]$μμ
νΈλ λ°©λ²λ€μ λ°°μ λ€.
(Wave Eq) $u_{tt}-c^{2}u_{xx} = 0$
(Heat Eq) $u_{t}-ku_{xx} = 0$
Applied Numerical Methods
(24-2 Exchange Student, GSU)μμΉν΄μνμ κΈ°λ³Έμ λ°°μ΄ κ² κ°λ€. ν¨μλ€μ κ·ΌλΆν°, λ―ΈλΆκ³μ, νΉμ ν μ λΆκ°, nμ°¨μ°λ¦½λ°©μ μ, μ¬μ§μ΄λ κ³ μ κ°κ³Ό κ³ μ 벑ν°κΉμ§..
μ»΄ν¨ν°μ λλ¨ν¨μ λλΌλ κΈ°λΆμ΄λ€.
Environment
Theorem and Proofs(Temporary placement, μ² κ±°μμ )
(Schwartz inequality)Let $a_{1}, \ldots , a_{n}$ and $b_{1}, \ldots , b_{n}$ be complex numbers.
$$|\sum_{k=1}^{n}a_{k}\bar{b_{k}}|^{2}\leq (\sum_{k=1}^{n}|a_{k}|^{2})(\sum_{k=1}^{n}|b_{k}|^{2})$$
Know that $\langle \vec{x},\vec{x} \rangle \geq 0 \textbf{ } \forall \vec{x}$. Also, since we defined
$e^{i\theta} = \frac{\langle \vec{x},\vec{y} \rangle}{|\langle \vec{x},\vec{y} \rangle|}$, we know that
$e^{-i\theta} = \frac{|\langle \vec{x},\vec{y} \rangle|}{\langle \vec{x},\vec{y} \rangle}$. By the
definition of inner product, $\langle c\vec{x},\vec{y} \rangle = c\langle \vec{x},\vec{y} \rangle$.
Then, we also get $\langle \vec{x},c\vec{y} \rangle = \bar{c}\langle \vec{x},\vec{y} \rangle$
begin{align*}
0\leq f(t) = \langle \vec{x}+te^{i\theta}\vec{y}, \vec{x}+te^{i\theta}\vec{y}\rangle &= \langle
\vec{x},\vec{x} \rangle + \langle \vec{x},te^{i\theta}\vec{y} \rangle + \langle
te^{i\theta}\vec{y},\vec{x} \rangle + \langle te^{i\theta}\vec{y},te^{i\theta}\vec{y} \rangle\\
&= \langle \vec{x},\vec{x} \rangle + te^{-i\theta}\langle \vec{x},\vec{y} \rangle + te^{i\theta}\langle
\vec{y},\vec{x} \rangle + te^{i\theta}te^{-i\theta}\langle \vec{y},\vec{y} \rangle\\
&= \langle \vec{x},\vec{x} \rangle + t|\langle \vec{x},\vec{y} \rangle| + t\frac{\langle \vec{x},\vec{y}
\rangle \langle \vec{y},\vec{x} \rangle}{|\langle \vec{x},\vec{y} \rangle|} + t^{2}\langle
\vec{y},\vec{y} \rangle\\
&= \langle \vec{x},\vec{x} \rangle + 2t|\langle \vec{x},\vec{y} \rangle| + t^{2}\langle \vec{y},\vec{y}
\rangle \text{(Quadratic inequality of t)}\\
\end{align*}
Since this holds for every $t\in \mathbb{R}$,
$$D = |\langle \vec{x},\vec{y} \rangle|^{2} - \langle \vec{x},\vec{x} \rangle \langle \vec{y},\vec{y}
\rangle \leq 0.$$
$LHS$ of Schwartz inequality is $|\langle \vec{x},\vec{y} \rangle|^{2}$ and $RHS$ is $\langle
\vec{x},\vec{x} \rangle \langle \vec{y},\vec{y} \rangle = |\vec{x}|^{2}|\vec{y}|^{2}$, so it's showed by
$D$.
Definition of some of things...
Formatting Texts
Some text can be
bold and
some can be
emphasized.
νκΈ° μ«λ€ -μ΄λν¨